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Abstract— Accurate hand motion capture (MoCap) is vital
for applications in robotics, virtual reality, and biomechanics,
yet existing systems face limitations in capturing high-degree-of-
freedom (DoF) joint kinematics and personalized hand shape.
Commercial gloves offer up to 21 DoFs, which are insufficient
for complex manipulations while neglecting shape variations
that are critical for contact-rich tasks. We present FSGlove,
an inertial-based system that simultaneously tracks up to 48
DoFs and reconstructs personalized hand shapes via DiffHCal, a
novel calibration method. Each finger joint and the dorsum are
equipped with IMUs, enabling high-resolution motion sensing.
DiffHCal integrates with the parametric MANO model through
differentiable optimization, resolving joint kinematics, shape
parameters, and sensor misalignment during a single stream-
lined calibration. The system achieves state-of-the-art accuracy,
with joint angle errors of less than 2.7◦, and outperforms com-
mercial alternatives in shape reconstruction and contact fidelity.
FSGlove’s open-source hardware and software design ensures
compatibility with current VR and robotics ecosystems, while
its ability to capture subtle motions (e.g., fingertip rubbing)
bridges the gap between human dexterity and robotic imitation.
Evaluated against Nokov optical MoCap, FSGlove advances
hand tracking by unifying the kinematic and contact fidelity.
Hardware design, software, and more results are available at:
https://sites.google.com/view/fsglove.

I. INTRODUCTION

The human hand, a remarkably dexterous end-effector
capable of executing intricate tasks, serves as both the
inspiration and benchmark for robotic hand design and
manipulation research. Accurate motion capture of the hand
during manipulation is critical for collecting data essential
to diverse downstream applications, including hand pose
estimation, teleoperation, and imitation learning. Achieving
high-fidelity hand motion capture hinges on two factors: joint
kinematics and hand shape modeling.

Currently, the most comprehensive commercially available
hand MoCap glove [1] can capture at most 21 degrees of
freedom (DoFs). However, complex manipulations, such as
thumb-index fingertip rubbing, are still beyond the ability
to capture, as they require additional torsional DoFs in the
proximal or middle phalanges that are often overlooked
(Fig. 1), but recently, some dexterous robotic hands [2]
tend to support control such DoFs. Similarly, hand shape
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Fig. 1: Hand shape variation. (a) The variation in hand
shapes across different human subjects and a robotic hand.
(b) Thumb-index fingertip rubbing requires a slight twist
DoF. (c), (d) Motion transfer often fails when adapted
between hands with heterogeneous shapes, even when all
the joints are mapped.

variations, driven by differences in bone length and soft-
tissue composition, demand personalized models for accurate
motion reconstruction, particularly during contact-rich tasks
involving objects or self-interaction. Existing hand motion
capture systems, whether commercial [3], [4] or research-
oriented [5], [6], [7], focus primarily on joint angle estima-
tion with limited DoFs and neglect the shape variations. This
oversight hinders the transfer of in-manipulation motions to
virtual avatars or anthropomorphic robotic hands, where both
kinematic and contact fidelity are paramount (Fig. 1).

To bridge this gap, we present FSGlove, a novel inertial-
based hand tracking system simultaneously capturing up to
48-DoF joint kinematics and personalized hand shape. Each
finger joint and the dorsal region are instrumented with
inertial measurement units (IMUs), enabling high-resolution
motion sensing. A key innovation is DiffHCal, a shape-
aware calibration method that embeds personalized hand-
shape estimation into a streamlined calibration protocol. By
leveraging the parametric MANO hand model [8], DiffHCal
aligns captured sensor data to MANO’s joint and shape pa-
rameters through a differentiable optimization process. This
framework uses a series of predefined reference poses to si-
multaneously resolve skeletal joint parameters, shape param-
eters, and manual installation errors in a single optimization
process. Moreover, this process integrates seamlessly into
standard glove calibration workflows, requiring no additional
steps compared with commercial systems while delivering
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contact-consistent hand models. To democratize access, we
open-source the hardware design, low-level drivers for sensor
calibration, and high-level interfaces for integration with
motion capture ecosystems (e.g., OptiTrack, HTC Vive),
enabling plug-and-play compatibility with robotics and VR
frameworks.

We evaluate FSGlove across four metrics: (1) joint an-
gle accuracy (≤ 2.7◦), (2) shape reconstruction precision
(mean mesh error ≤ 3.6mm), (3) fingertip tracking error
(mean positional error ≤ 16mm), and (4) hand-object in-
teraction fidelity (mean positional error ≤ 20mm), bench-
marking against commercial glove systems. Despite its low-
cost design, FSGlove achieves state-of-the-art performance
in shape-aware tracking, surpassing commercial alternatives
(e.g., Manus Metaglove Pro, VRTRIX) in contact-rich ma-
nipulation tasks.

We summarize our contributions as follows:
• FSGlove, the first open-source, high-DoF (up to 48

DoFs) data glove integrating inertial sensing with shape-
aware calibration.

• DiffHCal, a differentiable calibration framework that
infers personalized hand shape during standard wear-
time procedures.

• Comprehensive validation demonstrating high-precision
accuracy in joint measurement and shape reconstruction.

II. RELATED WORKS

A. Data Glove Systems

The development of data gloves dates back to the 1970s.
Since then, various types based on different sensors have
emerged, each with distinct pros and cons. The early Sayre
Glove in 1977 [9] used flexible tubes and photocells. It
could measure finger bending but had few sensors, was hard-
wired and cumbersome, and had limited applications. In the
1980s, the Data Glove [10] was a significant advancement.
It used plastic tubes and light-based sensors for joint angle
measurement, followed by the Power Glove [11] and the
Super Glove [12]. These gloves could measure finger joint
bending but the cloth support restricted hand movement,
affecting measurement accuracy. They also needed complex
calibration, and some had problems such as non-linear map-
ping and sampling limitations [12].

MemGlove[13] combined resistive and fluidic sensors for
hand pose reconstruction. However, it featured a complex
fabrication and sensor integration process. Gloves with flex
sensors [14] were inexpensive and easy to use for measuring
finger flexion. However, the sensors were sensitive to tem-
perature and vulnerable to wear and tear. In addition, the
large size of the sensors limited the degrees of freedom they
could capture.

With advancements in microelectronics, gloves equipped
with MEMS-based inertial measurement unit (IMU) sensors
have emerged. The standardized production of sensor chips
has significantly reduced costs, enabling mass production of
these gloves. These gloves [15], [16] leverage IMU char-
acteristics to provide superior dynamic responses, enabling

comprehensive capture of hand and arm movements. [6] in-
troduced a data glove prototype incorporating flexible printed
circuits (FPC) and proposed the use of angle sensors to verify
IMU accuracy. Similarly, [17] also presented a modular
IMU-based data glove design. However, these approaches
neglected adaptability to varying hand sizes and lacked
optimization for machine learning applications. Nonetheless,
these sensors face calibration challenges [16] and occasional
susceptibility to external magnetic field interference.

B. Glove Calibration Methods

To alleviate or address problems caused by glove sen-
sors, data glove calibration research has seen continuous
development in recent years. Chou et al. [18] used linear
regression for Cyberglove calibration, relying on a vision
system to handle the complex relationship between sensor
readings and joint angles. Kahlesz et al. [19] modeled sensor
cross-couplings for high-degree DoF data gloves like the Cy-
berglove, achieving visually appealing calibrations without
extra hardware. Sun et al. [20] applied genetic algorithms to
calibrate exoskeleton data gloves, accounting for hand-size
and wearing-position variations. Zhou et al. [21] simplified
CyberGlove calibration in virtual rehabilitation via artificial
neural networks, benefiting disabled patients. Connolly et
al. [22] improved the accuracy and usability of the 5DT
Data Glove 14 Ultra using neural networks, eliminating the
need for traditional calibration for those with limited joint
mobility.

III. SYSTEM ARCHITECTURE AND DESIGN

For both robotics and motion capture applications, stable
operation and real-time processing of data from multiple
sensors are essential. To meet this requirement, we have
developed the distributed motion capture system shown in
Fig. 2. The system comprises three hardware-independent
subsystems: (1) the FSGlove for finger kinematics recording,
(2) a dorsal tracker for global hand translation, and (3) a
data acquisition suite for sensor fusion and visualization.
These components communicate via Ethernet or Wi-Fi with
synchronized clocks. We detail the FSGlove hardware in Sec.
III-A, the dorsal tracker in Sec. III-B, and the data acquisition
pipeline in Sec. III-C.

A. Hardware Setup of FSGlove

a) Topology and Mechanical Design: Human finger
joints function as hinge-like constraints, permitting rotations
between hierarchically connected phalanxes (proximal →
middle → distal). To capture this kinematic chain, we deploy
three IMUs per finger, positioned dorsally on the proximal,
middle, and distal phalanxes, supplemented by a dorsum-
mounted IMU for global orientation. This forms a 16-IMU
network (5 fingers × 3 + 1 dorsum).

To minimize wiring complexity while preserving dexterity,
IMUs are soldered onto a custom FPC. The FPC is bonded
to a stretchable nylon glove using 3D-printed mounts, which
secure sensors against skin slippage during dynamic mo-
tions. A dorsum-mounted enclosure houses the single-board
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Fig. 2: System Architecture. The system gathers IMU
sensor data via an SBC and then sends them from the palm
tracker to a host computer. The computer calibrates and
models the hand shape, aligns the data, and outputs a final
hand-and-object mesh.
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Fig. 3: Glove hardware design. The Raspberry Pi Zero 2W
serves as the system’s core, receiving sensor data from a
custom UART-USB daughter board over a USB bridge. The
daughter board collects IMU data via a flex-printed circuit,
and the IMUs are attached to the glove surface.
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Fig. 4: FSGlove’s board compatibility. (a) Basic FSGlove
without a dorsal tracker, capturing only finger kinematics.
(b) FSGlove is equipped with an optical dorsal tracker and
tapped FPC, which is integrated with the Nokov MoCap
system. (c) FSGlove is equipped with an HTC Vive Tracker,
integrated with the Vive VR system.

computer (SBC) and USB-UART daughter board, ensuring
synchronous movement with the hand’s rigid metacarpal
structure.

b) IMU Selection: The IMU dimensions must accom-
modate finger phalanx size while providing high-accuracy
orientation estimation. We prioritize compact form factor,
estimation precision (static/dynamic), refresh rate, and cost
efficiency. Our implementation employs the HI229 module
[23] based on the BNO055 chip, which delivers world-
frame-referenced fused orientation estimates via onboard
sensor fusion. As specified in the manufacturer datasheet, this
module achieves 0.8◦ static angular error and 2.5◦ dynamic
error at 100-400 Hz sample rates – performance comparable
with commercial data glove IMUs. For example, VRTRIX
datagloves[4] can achieve 0.5-2.0◦ angular error at 180Hz
sample rate.

c) Single-Board Computer (SBC): The SBC should be
able to process 16 IMU data streams with wireless support.
We select the Raspberry Pi 2W (Pi2W) for its quad-core
1.0GHz ARM CPU and integrated Wi-Fi, which satisfies
real-time data aggregation and transmission requirements. As
a widely available off-the-shelf component, the Pi2W ensures
system replicability and simplifies maintenance.

d) USB-UART Daughter Board: IMU data should be
sent to SBC through UART ports. To drive 16 IMUs via
UART ports, we designed a daughter board integrating
a USB hub and dual CH9344 8-Port USB-UART bridge
chips to expand the connectivity to 16 UART ports while
maintaining 480 Mbps uplink bandwidth. A custom USB
bridge connects the daughter board to the Pi2W’s USB
controller, and all components are housed in a 3D-printed
enclosure to prevent electrical shorts. This design resolves
the port scarcity inherent to SBCs without compromising
signal integrity.

e) Battery System for Mobility: A 1100 mAh Li-ion
battery with charge-management circuitry powers the Pi2W
via its 40-pin GPIO header, enabling untethered operation.
Despite the high power demands of 16 IMUs and Wi-Fi com-
munication, the glove can operate continuously for 2 hours.
This balance between runtime and glove weight (110g)
ensures usability during prolonged manipulation tasks.

f) Cost Analysis: The total bill-of-materials cost for
the 16-IMU glove configuration is $426, including as-
sembly expenses (detailed breakdown in Supplementary).
IMUs account for 75% of this cost ($320), suggesting cost
reductions are achievable in applications requiring fewer
sensors—consistent with commercial glove designs. For such
scenarios, functionally equivalent systems can be realized at
substantially lower costs while retaining compatibility with
our modular architecture.

B. Dorsal Tracker

While IMUs capture hand joint orientations, global trans-
lational motion requires complementary tracking. We adopt
the Nokov optical system to resolve 6DoF dorsal poses.
As is shown in Fig. 4, we design a 3D-printed tree-like
structure hosting multiple infrared reflective (IR) markers,



to ensure the glove is tracked stably with the optical system.
Additionally, we apply tape to shield the FPC, thereby
reducing infrared reflection noise.

C. Data Acquisition Suite

The data acquisition suite integrates synchronized streams
from the FSGlove and the dorsal tracker. We detail four
critical design aspects below.

a) Communication Protocols: We adopt gRPC for data
transmission, leveraging its low-latency bidirectional com-
munication and stream abstraction capabilities. Integration
of the Protobuf serialization protocol eliminates custom
communication protocol development, enhancing maintain-
ability compared to naive TCP implementations. For dor-
sal tracking, a middleware layer facilitates interoperability
with heterogeneous tracking systems, utilizing inter-process
communication (IPC) to minimize latency and computational
overhead.

b) Time Synchronization: The distributed design re-
quires a synchronized clock of different sub-systems. In this
pipeline, the SBC synchronizes its system clock with a PC-
based time-server using the popular Network Time Protocol.
Given the limited crystal quality and inherent inaccuracies
of SBC system clocks, this synchronization is performed
periodically to maintain alignment with the PC’s time. The
Nokov system employs custom protocols for synchroniza-
tion, but for other systems, the Precision Time Protocol [24]
is recommended, especially for devices with modern network
controllers. The 16 onboard IMUs are synchronized by the
time sync module based on the timestamped arrival of data
packets. To account for potential variations in message arrival
times, the synchronization process utilizes an approximate
policy derived from the message filter of the Robot Operating
System (ROS).

c) The Data Flow: The SBC and PC communicate over
Wi-Fi. During initialization, the SBC loads USB drivers and
processes raw IMU byte streams through a parser module,
converting them into timestamped structured messages. To
optimize the trade-off between battery consumption, com-
putational load, and motion fidelity, IMUs are sampled at
100 Hz. A time synchronization module aligns data from
all 16 IMUs into unified measurement entries containing
triaxial acceleration, angular velocity, and fused orientation
data. These entries are streamed to the PC via gRPC, where
a calibration module integrates dorsal tracker poses with the
shape-aware calibration algorithm to resolve the final hand
pose. Algorithmic details are elaborated in Sec. IV-A.

d) Delay Analysis: System latency measurements
quantify a total glove delay of 24 ms, predominantly caused
by Wi-Fi channel congestion at the SBC. The Nokov tracker
exhibits significantly lower latency (1 ms) thanks to direct
wired connectivity. Middleware and memory operations in-
troduce negligible overhead (< 0.5 ms) on modern PCs
with multicore CPUs and hierarchical cache architectures.
Reconstruction algorithm efficiency further influences end-
to-end latency, with GPU-accelerated processing (NVIDIA

2080 Ti) enabling real-time visualization at 25 Hz, yielding
a display latency of 40 ms.

IV. MOCAP DATA ALIGNMENT AND SHAPE-AWARE
CALIBRATION

In the FSGlove-based MoCap system, we need to convert
the raw sensor readings to hand motion data. We propose a
unified approach, DiffHCal, to align and calibrate the data
from the MoCap system and consider both joints and shapes.
DiffHCal is built based on the MANO hand model [8], which
is widely utilized in many hand-related tasks and has a rich
ecosystem. Importantly, it parameterized both the joint and
shape of the hand.

A. Pose Alignment and Calibration

The raw IMU data captured by the glove does not repre-
sent joint angles but the phalange rotations. Therefore, we
need to first convert them to joint angles. Then, considering
the glove’s wearing, the IMU may have different relative
poses to the corresponding finger phalange for each glove’s
wearing process. Such installation poses should be calibrated
each time the glove is worn.

a) Pose Alignment: We first establish a virtual world
coordinate system M for MANO. IMU has a uniform West-
North-Up (WNU) coordinate system as the world coordinate
system W . IMUs are indexed according to the finger link ID
on MANO. Ideally, we assume that each IMU is installed
and aligned with the link frame perfectly. RW

i is i-th IMU’s
reading while RM

i represents the rotation of i-th finger link
in the M coordinate system. Then, rotation from the WNU
world coordinate system to the MANO’s world coordinate
system is A:

RM
i = ARW

i . (1)

By defining the joint index with its parent link’s index, in
MANO’s convention, for each finger, joint i connects link i
and link i − 1. Therefore, the joint angle can be calculated
by:

θi = RM
i (RM

i−1)
−1. (2)

b) Pose Calibration: In Eq. 1 and Eq. 2, RW
i is read

from IMU sensor, RM
i is read from the virtual environment

where the MANO exists (i.e., a 3D simulator, such as
RFUniverse [25]). All we need to know is the transformation
matrix A.

The challenge in calculating A is how a human in the real
world can pose the hand the same way as the virtual hand.
Since A is the same for all the finger links, one finger link
pose pair is all we need.

However, in practice, the IMU cannot be perfectly aligned
with the link frame, and its orientation changes each time the
glove is worn because it is flexible. Thus, considering such
installation error, Eq. 1 should be:

RM
i Ci = ARW

i , (3)

Ci is the correction rotation indicating the installation error
from i-th link frame.
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Fig. 5: Calibration Poses. (a) The pose calibration process
involves only three simple poses. (b) The shape calibration
process requires each fingertip to touch the thumb tip.

To solve both A and Ci, at least two sets of standard
reference hand pose should be defined, and the least square
method can be applied.

In practice, we define three standard reference poses: the
rest pose, the x-axis rotation pose, and the y-axis rotation
pose. As shown in Fig. 5.(a), The rest pose is when flatting
the hand palm and face downward onto a surface, and
spreading all fingers as wide as possible. The x-axis rotation
pose is when we rotate the wrist of the rest pose around
the x-axis (keeping the fingers still and orienting the palm
vertically). The y-axis rotation pose is when we rotate the
wrist of the x-axis rotation pose around the y-axis (keeping
the fingers still while moving the palm in a vertical plane).

B. Shape Calibration

When two people try to manipulate an object with the
same hand pose, the one with the bigger hand is already in
contact with the object, while the one with the smaller hand is
not. Failing to consider the shape variation will cause severe
problems when downstream tasks (e.g., VR/AR, manipula-
tion data collection) involve object interaction. Therefore, we
also need to calibrate the shape size.

To personalize different human hand shapes, we use the
MANO shape parameter vector β. Given pose parameters θ
and shape parameters β, the hand mesh model is defined as

(V,E) = M(θ, β), (4)

where V denotes the vertex set, E denotes the edge set.
One way to personalize the hand shape is to scan the

hand with a glove and apply the hand rig to the scanned
model. It would require considerable modeling time and is
not very practical from the user end. Another way is to utilize
a personalized hand reconstruction method such as [26], but
such a method is not trained on the hand with gloves.

Considering that shape variation mostly influences the
contact states, we propose calibrating the hand shape using
a few touch-based standard reference poses. In the standard
pose, we will define a contact state cjk = (vj , vk), the
contact set C = {cjk}, vj is the j-th vertex. As shown in
Fig. 5. (b), in a thumb-index pinch pose, if the thumb is
in contact with the index finger, 744-th vertex and 320-th

TABLE I: Comparison of hand glove motion capture
solutions. Our glove offers the lowest cost while maintaining
the sampling rate and pose DoFs.

Solution Technology Sampling Rate (Hz) Price

Ours (FSGlove) IMU (16 unit) 100 $426
VRTRIX Pro IMU (6 unit) 180 $1,400
Meta Quest 3 Camera 60 $499
Manus Metaglove Magnetic Sensor 120 $5,250

vertex should be in contact, where indices are of MANO’s
convention. Given the predefined contact relationship in the
reference poses, and humans try to replicate the reference
pose in the real world, we apply the measured hand pose to
the MANO hand and define the shape error metric as:

Eshape(β) =
∑
cjk∈C

∥vj(θ, β)− vk(θ, β)∥22. (5)

Since M in Eq. 4 is differentiable [8], minimizing Eshape

to find the optimal β is also differentiable.
Considering most manipulation applications are grasping-

based, optimizing the contact states on the fingertips would
suffice for such scenarios. It is the default setting for our
experiments. If more complex manipulations are considered,
such as in-hand manipulation, the contact states on another
part of the hand could also be considered, which is trivial to
extend with the same optimization scheme.

C. Alignment with the Dorsal Tracking System

Finally, the wrist pose of the personalized MANO must
be obtained. We mentioned before that in the FSGlove-based
MoCap system, the dorsal rotation is obtained from IMU,
and the dorsal translation is obtained from the external dorsal
tracker. The alignment and calibration process is similar to
the pose part. The main difference is that we should calculate
the transformation matrix A′ between the dorsal tracker’s
world coordinate system and MANO’s.

To note, we can use the same reference hand poses as
the ones described in Sec. IV-A to accomplish the alignment
process. Thus, we can simultaneously accomplish the pose
alignment process for the hand and wrist if necessary. In this
way, all the calculations for hand pose, shape, and wrist pose
are differentiable.

V. EVALUATION EXPERIMENTS

To evaluate the performance of these gloves, we designed
a series of experiments based on common research and
application scenarios and selected multiple different hand
pose estimation technologies for comparative study. They
include the VRTRIX MoCap glove, which also uses an IMU
solution, the Meta Quest3, which adopts a vision-based hand
recognition algorithm, and the Manus Metaglove Pro based
on magnetic sensing, which claims to be the most precise
hand tracking solution. Details of their information can be
found in Tab. I.
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Fig. 7: Results of single joint measurement. Our system’s
angle output closely matches the measurements from the
Nokov MoCap system.

A. Single Joint Measurement

According to our specific use case, we need to validate the
accuracy of joint pose alignment using a pair of IMUs. We
have designed a 3D-printed base plate to model scenarios of
finger movement. As illustrated in Fig.6, the device is divided
into two sections, A and B, connected via a rotating axis.
Each section has designated positions for mounting motion
capture marker balls, facilitating the capture of sections A
and B’s postures using the Nokov system and enabling
the calculation of the true rotation angle of the axis. With
Nokov’s tracking accuracy at 0.5 mm, at a scale of 100 mm,
the measurement accuracy for rotation reaches 0.3 degrees,
which meets our requirements. In our experiments, we use
the output from the Nokov system as the benchmark to gauge
the error in pose estimation provided by the IMU system.
As the results shown in Fig.7, the bias of the IMU’s pose
estimation is ±2.7◦, with a standard deviation of ±1.8◦. The
non-linearity of the sensor is 0.7%. Furthermore, its accuracy
does not fluctuate with changes in joint angles. We can deem
such an IMU system is reliable.

Method ↓ Distance (mm)

Index Middle Ring Little Average

Ours 7.2 16.5 12.0 27.1 15.7
Meta Quest3 11.0 21.5 18.9 22.3 19.6
VRTRIX 20.9 14.4 25.3 15.1 18.9
MANUS 28.0 32.3 36.7 35.7 33.2

TABLE II: Results of fingertip pinch tracking. Our method
achieves the best average error. Notably, it attains the lowest
error for the index and ring fingers, confirming its superior
accuracy in most finger measurements.
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Fig. 8: Quantitative results of shape reconstruction. Our
solution demonstrates comparable performance to the Quest3
and outperforms other commercially available gloves.

B. Shape Reconstruction

As a data glove designed for hand motion reconstruction,
we are particularly interested in its fundamental shape recon-
struction capabilities. To conduct this experiment, a Photoneo
MotionCam depth camera was mounted on a tripod and
oriented toward a flat white wall, with the space between
the camera and the wall cleared to ensure unobstructed
imaging. A volunteer wearing the glove performed a series
of complex and diverse hand poses. During this process, the
Photoneo camera captured a high-precision grayscale depth
image of the volunteer’s hand while the glove recorded its
reconstruction results concurrently.

To compare the reconstruction results with the high-
precision depth images, the GroundedSAM model [27] was
employed to apply a ”hand” query to the depth image,
enabling precise extraction of the volunteer’s hand. The
extracted regions were then converted into a point cloud and
compared with the glove’s reconstruction results. To account
for the Photoneo camera’s output of a partial point cloud,
we use the unidirectional Chamfer Distance from the partial
point cloud P to the reconstructed hand mesh vertices V as
the error metric:

Esr =
1

|P |
∑
p∈P

min
v∈V

∥p− v∥22

The experiment was repeated 10 times for each pose, and
the results were averaged. As summarized in Fig. 8, our
solution demonstrates comparable performance to the Quest3
and outperforms other commercially available gloves.

However, we find that the Meta Quest3 performs compa-
rably or even better in fingertip pinching. We attribute this
to two main factors. First, Quest3 uses visual information
to reconstruct a hand mesh, thereby capturing more precise
geometric details when subtle contact actions are visible.
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Fig. 9: Qualitative results of shape reconstruction.

Test Result (mm) Total Avg.

Method ↓ #1 #2 #3 #4 #5
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Ours 22.6 5.5 16.5 4.2 17.9 2.9 26.6 2.0 17.5 3.3 20.2
Meta Quest3 69.7 13.0 17.7 1.3 18.0 4.8 16.7 11.1 18.1 9.2 28.0
VRTRIX 41.9 6.4 14.4 2.3 19.1 3.6 16.2 2.3 30.8 8.2 24.5
MANUS 28.0 7.3 19.8 3.9 26.7 4.6 25.7 4.0 33.2 12.3 26.7

TABLE III: Quantitative results of Hand-Object Interaction Consistency Experiment As can be observed, our proposed
method outperforms other approaches on most objects. The relatively lower scores of MANUS and VRTRIX are largely
attributable to unnatural hand motions induced by external forces during the interaction, which are consequently filtered by
their built-in algorithms.

Second, the finger-mounted dorsal IMUs can collide with
each other, especially during challenging poses like thumb-
pinky contact, causing positional drift and reducing accuracy.

C. Fingertip Pinch Tracking

Motion capture gloves are commonly utilized in virtual
reality (VR). For example, [28] adopted a commercial motion
capture glove in VR to generate a dataset that trains a grasp
policy for robot arms. Therefore, minimizing contact error
between fingertips is critical, as it directly impacts the accu-
racy of essential operations such as grasping. To address this,
we designed an experiment to quantify fingertip contact error
in the Pinch pose. After properly calibrating the glove, partic-
ipants performed a series of instructed gestures, sequentially
bringing the thumb into contact with the other four fingertips.
During the experiment, wrist rotation was randomly applied
to simulate real-world operating conditions. For each Pinch
pose, a 10-second sequence of distances between fingertip
endpoints was recorded, and the averaged measurements
were summarized in Tab. II. Our solution demonstrated
marginally superior performance compared to the VRTRIX
glove, whereas the MANUS glove exhibited some deviation.
The Quest3’s performance was notably suboptimal due to
its helmet-mounted cameras’ inability to capture hand poses
when the user’s palm faced downward.

For the little pinching pose, VRTRIX outperforms both our
glove and other methods by a large margin. This is because

VRTRIX systematically tends to bend the thumb across the
palm, regardless of the actual thumb position, as shown in
Fig.9, thereby improving its performance in the evaluated
metric. However, this behavior can cause the reconstructed
mesh to deviate significantly from the ground truth.

D. Hand-Object Interaction Consistency

In many situations, the human hand is used to manipulate
various objects. Therefore, we are very curious whether
the recorded hand mesh sequences can faithfully reflect the
actual physical processes that occur when gloves interact
with objects. To explore this, we selected five objects:
cube large, cup, utah teapot, stanford rabbit, and
elephant from the ContactPose [29] dataset, which provides
a collection of digital models of common objects, each
equipped with mounting points for marker balls.

Following the methods described in [29], we installed
markers on these models to track their position and orienta-
tion changes using Nokov. We then adjusted the visualization
and recording programs based on the Nokov readings. Our
glove setup already includes a tracking solution for the palm,
so no modifications were necessary. For VRTRIX, MANUS
gloves, and Quest3, we created multiple replicas of the
dorsal tracker for palm tracking. For each combination of
object and glove, we had volunteers perform operations for
approximately 60 seconds, recording the palm and object’s
position and orientation via Nokov, and hand reconstruction



results via custom methods.
Our focus was on the regions of interest in the hand

mesh (the tips of each finger) and the interpenetration of
the hand mesh with the object mesh. We selected 30 random
moments from the sequence, ensuring that all fingers were in
contact with the object. For these moments, we calculated the
distance from the fingertip endpoint to the nearest point on
the object mesh. A lower value indicates a better reconstruc-
tion. Since all palm positions and orientations were provided
by Nokov and the tracking devices, this allowed for a fair
comparison. The experimental results in Tab. III indicate
that our method performs slightly better than Quest3 and
VRTRIX while significantly outperforming MANUS gloves.

VI. CONCLUSION AND FUTURE WORK

This work introduces FSGlove, an open-source, high-DoF
(48-DoF) data glove combining inertial sensing with person-
alized shape calibration, addressing critical gaps in hand mo-
tion capture. By integrating densely instrumented IMUs and
DiffHCal, a differentiable calibration framework, FSGlove
achieves anatomically consistent hand modeling, resolving
joint kinematics, shape parameters, and sensor misalignment
in a unified workflow. Experiments prove its state-of-the-
art joint angle accuracy, robust shape reconstruction, and
superior contact fidelity compared to commercial systems.
The system’s open design and compatibility with VR and
robotics systems democratize access to high-fidelity hand
tracking, enabling more possible downstream applications.

Future work includes enhancing IMU precision for sub-
degree tracking, extending DiffHCal to adapt to soft-tissue
deformation during contact dynamically, and generalizing
shape estimation to diverse hand anthropometries. Integrating
tactile feedback could further improve interaction realism,
while federated learning frameworks might enable person-
alized calibration without manual intervention. Exploring
applications in surgical robotics or immersive teleoperation
will validate FSGlove’s scalability. By open-sourcing the
design, we invite community-driven advancements, bridging
the fidelity gap between human and robotic manipulation.
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